一种基于特征点密度由聚焦堆栈估计深度的方法和装置

    公开(公告)号:CN106875436B

    公开(公告)日:2019-10-22

    申请号:CN201710090688.0

    申请日:2017-02-20

    Inventor: 邱钧 何建梅 刘畅

    Abstract: 本发明公开了一种基于特征点密度由聚焦堆栈估计深度的方法和装置,所述方法包括:提取聚焦堆栈中每个图像的特征点,建立基于特征点密度的聚焦测度;建立引入特征点密度的加权聚焦测度的估计深度的模型:以采用SML聚焦测度为例,建立SML与特征点密度的加权线性混合聚焦测度作为深度估计的目标函数,实现对场景深度的估计和全聚焦图。本发明的方案,建立关于特征点密度的聚焦测度及建立线性加权聚焦测度,并构建基于聚焦测度的深度估计模型,获取场景的深度信息,以实现场景的全聚焦与三维重构,可为现实三维重构提供精确的深度信息并获取全聚焦图像。

    一种基于特征点密度由聚焦堆栈估计深度的方法和装置

    公开(公告)号:CN106875436A

    公开(公告)日:2017-06-20

    申请号:CN201710090688.0

    申请日:2017-02-20

    Inventor: 邱钧 何建梅 刘畅

    Abstract: 本发明公开了一种基于特征点密度由聚焦堆栈估计深度的方法和装置,所述方法包括:提取聚焦堆栈中每个图像的特征点,建立基于特征点密度的聚焦测度;建立引入特征点密度的加权聚焦测度的估计深度的模型:以采用SML聚焦测度为例,建立SML与特征点密度的加权线性混合聚焦测度作为深度估计的目标函数,实现对场景深度的估计和全聚焦图。本发明的方案,建立关于特征点密度的聚焦测度及建立线性加权聚焦测度,并构建基于聚焦测度的深度估计模型,获取场景的深度信息,以实现场景的全聚焦与三维重构,可为现实三维重构提供精确的深度信息并获取全聚焦图像。

Patent Agency Ranking