基于误差修正和长短期记忆网络的光伏发电功率预测方法

    公开(公告)号:CN116435983A

    公开(公告)日:2023-07-14

    申请号:CN202310178602.5

    申请日:2023-02-28

    摘要: 本发明公开了基于误差修正和长短期记忆网络的光伏发电功率预测方法包括,采用双向长短期记忆网络结构对光伏功率数据进行预测,得到预测值与观测值之间的误差序列;基于经验模态分解算法分解所述误差序列,计算原始误差序列和各阶误差固有模态分量的概率密度函数;基于豪斯多夫距离比较模态分量和原始误差序列的概率密度函数的相似性,筛选并计算保留的模态分量的权重系数;采用双向长短期记忆网络结构预测各个模态分量以及光伏功率,分配每一个模态分量的权重系数;将预测误差模态分量和光伏功率预测结果相加,得到修正后的未来功率预测值;本发明通过分析误差序列和模态分量的相似性,能够自动修正预测误差,更加准确的预测光伏功率发电数据。