-
公开(公告)号:CN114022703B
公开(公告)日:2025-04-04
申请号:CN202111248733.3
申请日:2021-10-26
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/09
Abstract: 本发明公开了一种基于深度学习的高效车辆细粒度识别方法,它通过构建高效残差结构提取车辆图像特征,然后通过空间通道损失函数提高特征提取网络的细粒度分类能力,使网络更加专注于车辆图像的不同组件区域,保证特征通道的可区分性和可辨别性,并且不增加卷积神经网络推理的计算量。本发明通过深度学习自动提取特征,避免手工设计特征区域的局限性,更能克服车辆图片复杂环境噪音的干扰,并且能通过空间特征损失函数使特征通过关注更丰富的特征区域,提高车辆细粒度识别的准确率。
-
公开(公告)号:CN113420865A
公开(公告)日:2021-09-21
申请号:CN202110660174.0
申请日:2021-06-15
Applicant: 之江实验室
Abstract: 本发明涉及一种基于多算子融合的深度神经网络推理加速方法和系统,该方法具体为:首先输入神经网络计算图,获取神经网络计算逻辑图,依据神经网络算子间计算关系,获取完整的神经网络前向计算的符号表达式;然后使用可融合算子搜索方法,利用算子符号表达式自动简化系统,化简神经网络前向计算的符号表达式,获取最简的符号表达式,实现多算子融合;再依据多算子融合结果,根据获得的最简符号表达式,构建新的神经网络计算推理逻辑图,解耦最简符号表达式,离线计算并存储为新的模型参数,构建相应的神经网络模型结构;最后加载新的模型参数实现推理加速。本发明能够减少算子执行间隙的开销,提升设备计算资源利用率,优化网络整体推理速度。
-
公开(公告)号:CN114022703A
公开(公告)日:2022-02-08
申请号:CN202111248733.3
申请日:2021-10-26
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于深度学习的高效车辆细粒度识别方法,它通过构建高效残差结构提取车辆图像特征,然后通过空间通道损失函数提高特征提取网络的细粒度分类能力,使网络更加专注于车辆图像的不同组件区域,保证特征通道的可区分性和可辨别性,并且不增加卷积神经网络推理的计算量。本发明通过深度学习自动提取特征,避免手工设计特征区域的局限性,更能克服车辆图片复杂环境噪音的干扰,并且能通过空间特征损失函数使特征通过关注更丰富的特征区域,提高车辆细粒度识别的准确率。
-
公开(公告)号:CN114021629A
公开(公告)日:2022-02-08
申请号:CN202111248749.4
申请日:2021-10-26
Abstract: 本发明公开了一种基于均值动态时间规整的车辆轨迹运动模式提取方法。该方法先对原始轨迹进行初始化和重采样,获取重采样轨迹集合;根据重采样轨迹,计算基于均值动态时间规整的轨迹间距离;基于均值动态时间规整的轨迹间距离度量方法,并运用聚类算法进行聚类,得到聚类簇集合;最后为每个簇分别提取特征运动模式,得到特征运动模式集合。本发明通过采用限定的技术,可以准确地度量相似轨迹间距离,对长序列轨迹间距离度量更精准,适用于长序列轨迹的车辆行为分析,还可以从车辆轨迹数据集中提取特征运动模式;每一条提取的特征运动模式轨迹都可以直观地反映车辆的运动模式,更易于赋予运动模式语义赋予和可视化展示。
-
公开(公告)号:CN114021629B
公开(公告)日:2024-04-05
申请号:CN202111248749.4
申请日:2021-10-26
IPC: G06V10/762 , G06F17/16 , G06V10/774
Abstract: 本发明公开了一种基于均值动态时间规整的车辆轨迹运动模式提取方法。该方法先对原始轨迹进行初始化和重采样,获取重采样轨迹集合;根据重采样轨迹,计算基于均值动态时间规整的轨迹间距离;基于均值动态时间规整的轨迹间距离度量方法,并运用聚类算法进行聚类,得到聚类簇集合;最后为每个簇分别提取特征运动模式,得到特征运动模式集合。本发明通过采用限定的技术,可以准确地度量相似轨迹间距离,对长序列轨迹间距离度量更精准,适用于长序列轨迹的车辆行为分析,还可以从车辆轨迹数据集中提取特征运动模式;每一条提取的特征运动模式轨迹都可以直观地反映车辆的运动模式,更易于赋予运动模式语义赋予和可视化展示。
-
-
-
-