-
公开(公告)号:CN111242281A
公开(公告)日:2020-06-05
申请号:CN202010014858.9
申请日:2020-01-07
Applicant: 中国科学院计算技术研究所厦门数据智能研究院
Abstract: 本发明公开了一种深度卷积神经网络权值优化方法,包括以下步骤:获取初始种群,进行初始化和基因编码;对初始种群中所有个体进行梯度下降的参数训练,直至到达预设的次数;计算个体适应度并进行排序;基于遗传算法,对初始种群进行选择、交叉、变异操作,获得新一代种群;判断是否到达终止条件,若否则对新一代种群进行迭代训练和进化。本发明采用遗传算法与梯度下降方法相结合,来优化深度卷积神经网络权值,能够提高深度卷积神经网络的识别率,同时提高了深度卷积神经网络的获得速度。