一种基于表示向量的作品标签推荐方法和系统

    公开(公告)号:CN107391577A

    公开(公告)日:2017-11-24

    申请号:CN201710469315.4

    申请日:2017-06-20

    Abstract: 本发明涉及一种基于表示向量的标签推荐方法和系统,其特征在于,包括:获取多个作品,根据每个作品对应的标签、关系及对象,构建多个包含作品和标签的二元组信息和包含作品、关系及对象的三元组信息,根据二元组信息和三元组信息生成训练数据集;通过对训练数据集进行表示学习,分别得到各个作品的作品表示向量和各类标签的标签表示向量;通过计算各个作品表示向量和各类标签表示向量之间的距离,从各类标签中筛选出各个作品的推荐标签。本发明在学习表示向量的过程中,本发明同时考虑作品标签对二元组信息和作品的三元组信息。通过融入更多信息,使得学到的表示向量能够更准确地反映作品和标签的语义,从而更好地支持标签推荐这一任务。

    一种基于表示向量的作品标签推荐方法和系统

    公开(公告)号:CN107391577B

    公开(公告)日:2020-04-03

    申请号:CN201710469315.4

    申请日:2017-06-20

    Abstract: 本发明涉及一种基于表示向量的标签推荐方法和系统,其特征在于,包括:获取多个作品,根据每个作品对应的标签、关系及对象,构建多个包含作品和标签的二元组信息和包含作品、关系及对象的三元组信息,根据二元组信息和三元组信息生成训练数据集;通过对训练数据集进行表示学习,分别得到各个作品的作品表示向量和各类标签的标签表示向量;通过计算各个作品表示向量和各类标签表示向量之间的距离,从各类标签中筛选出各个作品的推荐标签。本发明在学习表示向量的过程中,本发明同时考虑作品标签对二元组信息和作品的三元组信息。通过融入更多信息,使得学到的表示向量能够更准确地反映作品和标签的语义,从而更好地支持标签推荐这一任务。

Patent Agency Ranking