一种基于深度残差网络的压缩感知重建方法和系统

    公开(公告)号:CN107730451B

    公开(公告)日:2020-06-05

    申请号:CN201710911893.9

    申请日:2017-09-29

    Abstract: 本发明涉及一种基于深度残差网络的压缩感知重建方法和系统,包括:获取原始图像信号作为训练数据,并通过尺度变换和分割处理将训练数据分割为多个图像块;根据每个图像块的亮度分量和压缩感知理论模型,获得亮度分量对应的测量值;通过全连接网络对测量值进行线性映射处理,得到初步重建结果;将初步重建结果输入深度残差网络,训练得到估计残差值;将估计残差值与初步重建结果进行融合,生成重建信号。由此,本发明通过引入深度残差网络参与信号的重建,不仅实现对测量值到图像的还原重建还用到深度残差网络仅学习与目标之间的差异这一特点,提升了还原信号的质量。

    一种基于深度残差网络的压缩感知重建方法和系统

    公开(公告)号:CN107730451A

    公开(公告)日:2018-02-23

    申请号:CN201710911893.9

    申请日:2017-09-29

    Abstract: 本发明涉及一种基于深度残差网络的压缩感知重建方法和系统,包括:获取原始图像信号作为训练数据,并通过尺度变换和分割处理将训练数据分割为多个图像块;根据每个图像块的亮度分量和压缩感知理论模型,获得亮度分量对应的测量值;通过全连接网络对测量值进行线性映射处理,得到初步重建结果;将初步重建结果输入深度残差网络,训练得到估计残差值;将估计残差值与初步重建结果进行融合,生成重建信号。由此,本发明通过引入深度残差网络参与信号的重建,不仅实现对测量值到图像的还原重建还用到深度残差网络仅学习与目标之间的差异这一特点,提升了还原信号的质量。

    基于自动编码器网络的压缩感知测量矩阵优化方法和系统

    公开(公告)号:CN107784676B

    公开(公告)日:2020-06-05

    申请号:CN201710911885.4

    申请日:2017-09-29

    Abstract: 本发明涉及一种基于自动编码器网络的压缩感知测量矩阵优化方法和系统,包括:获取原始图像作为训练数据,通过分割裁剪处理将训练数据分割多个图像块;根据预设的采样率和自动编码器网络对图像块进行采样,生成初步重建图;根据深度残差网络计算初步重建图和原始图像间的残差值;将残差值与初步重建图相融合,生成重建结果,并根据重建图和图像块建立损失函数,通过损失函数对自动编码器网络中的参数矩阵进行训练,最后将训练完成的自动编码器网络参数作为压缩感知测量矩阵。本发明通过自动编码器对数据维度的变换,模拟实现了图像从采集到重建的过程,其中采集过程的参数即为测量矩阵,并且得到的测量矩阵具有很好的重建质量。

    基于自动编码器网络的压缩感知测量矩阵优化方法和系统

    公开(公告)号:CN107784676A

    公开(公告)日:2018-03-09

    申请号:CN201710911885.4

    申请日:2017-09-29

    Abstract: 本发明涉及一种基于自动编码器网络的压缩感知测量矩阵优化方法和系统,包括:获取原始图像作为训练数据,通过分割裁剪处理将训练数据分割多个图像块;根据预设的采样率和自动编码器网络对图像块进行采样,生成初步重建图;根据深度残差网络计算初步重建图和原始图像间的残差值;将残差值与初步重建图相融合,生成重建结果,并根据重建图和图像块建立损失函数,通过损失函数对自动编码器网络中的参数矩阵进行训练,最后将训练完成的自动编码器网络参数作为压缩感知测量矩阵。本发明通过自动编码器对数据维度的变换,模拟实现了图像从采集到重建的过程,其中采集过程的参数即为测量矩阵,并且得到的测量矩阵具有很好的重建质量。

Patent Agency Ranking