-
公开(公告)号:CN111524170B
公开(公告)日:2023-05-26
申请号:CN202010286805.2
申请日:2020-04-13
Applicant: 中南大学
Abstract: 本发明公开了一种基于无监督深度学习的肺部CT图像配准方法。首先应用由滑动窗口和反向采样组成的预处理方法将肺部CT图像对划分成若干个便于神经网络模型处理的中间图像块对;随后使用由“缩减路径”、“扩张路径”、后续卷积层以及空间变换层组成的频繁连接U型卷积神经网络模型提取、融合图像特征,并输出与中间图像块对对应的密集位移场块和变形图像块;最后应用由边缘裁剪和重叠区域均值化组成的后处理方法将若干个变形图像块和密集位移场块拼接缝合成与原始肺部CT图像大小一致的变形图像和密集位移场。与已有配准算法相比,本发明方法完全自动,运行速度快且配准精度高。
-
公开(公告)号:CN111524170A
公开(公告)日:2020-08-11
申请号:CN202010286805.2
申请日:2020-04-13
Applicant: 中南大学
Abstract: 本发明公开了一种基于无监督深度学习的肺部CT图像配准方法。首先应用由滑动窗口和反向采样组成的预处理方法将肺部CT图像对划分成若干个便于神经网络模型处理的中间图像块对;随后使用由“缩减路径”、“扩张路径”、后续卷积层以及空间变换层组成的频繁连接U型卷积神经网络模型提取、融合图像特征,并输出与中间图像块对对应的密集位移场块和变形图像块;最后应用由边缘裁剪和重叠区域均值化组成的后处理方法将若干个变形图像块和密集位移场块拼接缝合成与原始肺部CT图像大小一致的变形图像和密集位移场。与已有配准算法相比,本发明方法完全自动,运行速度快且配准精度高。
-