基于深度学习和多引导的多模态MR影像脑肿瘤分割方法

    公开(公告)号:CN112365496A

    公开(公告)日:2021-02-12

    申请号:CN202011390956.9

    申请日:2020-12-02

    Applicant: 中北大学

    Abstract: 本发明基于深度学习和多引导的多模态MR影像脑肿瘤分割方法属于图像处理领域,解决多模态MRI脑胶质瘤分割过程中存在的3个问题:(1)脑胶质瘤边界不清晰导致的分割不准确的问题;(2)由于多模态MRI的亮度分布存在不均匀而导致的分割结果出现一些离散的误分割点的问题;(3)在脑胶质瘤MRI分割网络中对多种引导信息进行特征融合的问题,本发明将整体脑胶质瘤分割结果和脑胶质瘤边缘预测结果通过所提出的融合机制进行特征融合,实现了多特征图引导和融合下的多模态MRI脑胶质瘤分割,该深度分割网络以较少的参数量实现了高准确度的分割,因此该方法便于嵌入到边缘设备辅助医生进行脑胶质瘤的诊断和分析。

    一种改进的U-Net网络实现脊柱整体分割方法

    公开(公告)号:CN116433654A

    公开(公告)日:2023-07-14

    申请号:CN202310585887.4

    申请日:2023-05-23

    Applicant: 中北大学

    Abstract: 一种改进的U‑Net网络实现脊柱整体分割方法,包括以下步骤;步骤一:在编码器部分通过残差特征金字塔块来捕获多尺度信息,并融合多尺度信息;步骤二,在将浅层特征和深层特征融合过程中,为抑制冗余信息的重复利用,提出了注意力跳层结构;使用注意力跳层结构将编码器部分的特征与解码器部分的特征进行融合来实现多尺度特征融合;步骤三:使用了联合损失函数在编码器部分的每一个阶段都会对特征图进行上采样到原始图像大小,并与分割结果计算损失,对分割结果进行优化,从而实现分割边缘清晰的效果。本发明实现不同扫描视野的脊柱的分割,并提高脊柱分割的准确度。

    基于深度学习和多引导的多模态MR影像脑肿瘤分割方法

    公开(公告)号:CN112365496B

    公开(公告)日:2022-03-29

    申请号:CN202011390956.9

    申请日:2020-12-02

    Applicant: 中北大学

    Abstract: 本发明基于深度学习和多引导的多模态MR影像脑肿瘤分割方法属于图像处理领域,解决多模态MRI脑胶质瘤分割过程中存在的3个问题:(1)脑胶质瘤边界不清晰导致的分割不准确的问题;(2)由于多模态MRI的亮度分布存在不均匀而导致的分割结果出现一些离散的误分割点的问题;(3)在脑胶质瘤MRI分割网络中对多种引导信息进行特征融合的问题,本发明将整体脑胶质瘤分割结果和脑胶质瘤边缘预测结果通过所提出的融合机制进行特征融合,实现了多特征图引导和融合下的多模态MRI脑胶质瘤分割,该深度分割网络以较少的参数量实现了高准确度的分割,因此该方法便于嵌入到边缘设备辅助医生进行脑胶质瘤的诊断和分析。

Patent Agency Ranking