-
公开(公告)号:CN115063447B
公开(公告)日:2024-12-03
申请号:CN202210639984.2
申请日:2022-06-08
Applicant: 中北大学
IPC: G06T7/246 , G06T7/70 , G06V10/764 , G06V10/82 , G06T5/50 , G06N3/045 , G06N3/0464 , G06N3/084
Abstract: 本发明公开一种基于视频序列的目标动物运动追踪方法及相关设备,所述方法包括:抽取第一图像和双目摄像头拍摄到的第二图像后,作增强处理得到经过增强后的第三图像,再输入到优化后的YOLOv4‑Tiny模型中得到参数模型,对第二图像进行数据标注得到第一标注文件;将采集拍摄到的第四图像进行预处理后,输入到参数模型中得到检测框;将分别拍摄到的第四图像进行像素点匹配得到第五图像,并和检测框进行匹配,再将匹配成功的第五图像和检测框输入到改进后的Deep SORT算法模型中。通过优化YOLOv4‑Tiny训练模型,以便利用得到的参数模型共同输出目标物体的运动行为信息,实现保证分析精度时轻便化神经网络模型。
-
公开(公告)号:CN115063447A
公开(公告)日:2022-09-16
申请号:CN202210639984.2
申请日:2022-06-08
Applicant: 中北大学
Abstract: 本发明公开一种基于视频序列的目标动物运动追踪方法及相关设备,所述方法包括:抽取第一图像和双目摄像头拍摄到的第二图像后,作增强处理得到经过增强后的第三图像,再输入到优化后的YOLOv4‑Tiny模型中得到参数模型,对第二图像进行数据标注得到第一标注文件;将采集拍摄到的第四图像进行预处理后,输入到参数模型中得到检测框;将分别拍摄到的第四图像进行像素点匹配得到第五图像,并和检测框进行匹配,再将匹配成功的第五图像和检测框输入到改进后的Deep SORT算法模型中。通过优化YOLOv4‑Tiny训练模型,以便利用得到的参数模型共同输出目标物体的运动行为信息,实现保证分析精度时轻便化神经网络模型。
-