-
公开(公告)号:CN117218378A
公开(公告)日:2023-12-12
申请号:CN202311012010.2
申请日:2023-08-11
Applicant: 中北大学
Abstract: 本发明属于红外目标跟踪领域,具体为一种高精度回归的红外小目标跟踪方法,针对红外小目标运动过程中出现目标形变、相机抖动和背景变化,边界框回归并不准确这一问题。首先,通过特征提取网络对初始区域、更新区域和搜索区域进行高分辨率和低分辨率特征图的提取;然后,使用特征融合网络对三种高、低分辨率特征图分别进行特征融合,获得回归特征图和分类特征图;之后,利用相关网络对回归、分类特征图进行特征增强和信息交互,得到查询向量和增强特征图;最后,将其输入到输出网络中,获得边界框回归、分类得分图。此外,当测试过程中目标分类得分高于预定义的阈值时,将三帧图像区域中的更新区域进行更新,实现高精度回归的红外小目标跟踪。
-
公开(公告)号:CN116402851A
公开(公告)日:2023-07-07
申请号:CN202310268997.8
申请日:2023-03-17
Applicant: 中北大学
Abstract: 针对复杂背景下红外弱小目标难以提取有效特征、易受周围干扰物影响等难题,本发明提出一种复杂背景下的红外弱小目标跟踪方法。本发明网络模型首先将输入的参考区域和待跟踪区域传入双特征提取模块分别获得融合特征图;然后,利用相似性计算模块将融合特征图进行相似性计算,输出的相似度图中包含目标的分类和回归信息;最后,通过精细化模块和头网络输出当前帧图像目标的预测位置和边界框,以实现复杂背景下的红外弱小目标的稳健跟踪。本发明可有效对复杂场景中的真实目标进行稳健跟踪,减少目标周围干扰物的影响,提高跟踪性能,为接下来提取目标特征、判定关键事件提供准确的位置信息。
-