-
公开(公告)号:CN117972523A
公开(公告)日:2024-05-03
申请号:CN202410130176.2
申请日:2024-01-31
Applicant: 上海交通大学
IPC: G06F18/241 , G06F18/25 , G06F18/214 , G06F18/213 , G06F18/22 , G06N3/045 , G06N3/0464 , G06N3/08 , G01M13/00
Abstract: 一种考虑新发故障模式的旋转式机械部件协同诊断方法,在离线阶段构造局部特征复用卷积网络后,构建差异化判别指标以度量样本在不同的多个局部特征复用卷积网络上的诊断输出差异,实现对协同诊断模型的训练;在在线阶段综合训练后的卷积网络得到的平均集成诊断向量、差异化判别指标和差异化判别阈值实施协同诊断,实现了考虑新发故障模式的旋转式机械部件可靠故障诊断。本发明通过局部特征复用卷积网络和三重差异化增强策略分别提升了协同诊断基模型的准确性与差异化,从而驱动旋转式机械部件协同诊断,通过充分利用模型的辨别能力兼顾已知故障模式与新发故障模式的准确诊断,克服了仅依靠数据或特征差异而导致的诊断精度受限,对保障旋转式机械部件可靠性与安全性具有重要意义。