发明授权
US07165000B2 Method and apparatus for calibrating data-dependent noise prediction
有权
用于校准数据相关噪声预测的方法和装置
- 专利标题: Method and apparatus for calibrating data-dependent noise prediction
- 专利标题(中): 用于校准数据相关噪声预测的方法和装置
-
申请号: US11109207申请日: 2005-04-18
-
公开(公告)号: US07165000B2公开(公告)日: 2007-01-16
- 发明人: Jonathan J. Ashley , Heinrich J. Stockmanns
- 申请人: Jonathan J. Ashley , Heinrich J. Stockmanns
- 申请人地址: DE
- 专利权人: Infineon Technologies AG
- 当前专利权人: Infineon Technologies AG
- 当前专利权人地址: DE
- 代理机构: Brinks Hofer Gilson & Lione
- 代理商 James L. Katz
- 主分类号: G06F19/00
- IPC分类号: G06F19/00
摘要:
Disclosed herein is an apparatus and method of calibrating the parameters of a Viterbi detector 138 in which each branch metric is calculated based on noise statistics that depend on the signal hypothesis corresponding to the branch. An offline algorithm for calculating the parameters of data-dependent noise predictive filters 304A–D is presented which has two phases: a noise statistics estimation or training phase, and a filter calculation phase. During the training phase, products of pairs of noise samples are accumulated in order to estimate the noise correlations. Further, the results of the training phase are used to estimate how wide (in bits) the noise correlation accumulation registers need to be. The taps [t2[k],t1[k],t0[k]] of each FIR filter are calculated based on estimates of the entries of a 3-by-3 conditional noise correlation matrix C[k] defined by Cij[k]=E(ni−3nj−3|NRZ condition k).
公开/授权文献
信息查询