Machine Learning Based Spend Classification Using Hallucinations
Abstract:
Embodiments classify a product to one of a plurality of product classifications. Embodiments receive a description of the product and create a first prompt for a trained large language model (“LLM”), the first prompt including the description of the product and contextual information of the product. In response to the first prompt, embodiments use the trained LLM to generate a hallucinated product classification for the product. Embodiments word embed the hallucinated product classification and the plurality of product classifications and similarity match the embedded hallucinated product classification with one of the embedded plurality of product classifications. The matched one of the embedded plurality of product classifications is determined to be a predicted classification of the product.
Information query
Patent Agency Ranking
0/0