ALIAS-FREE COMPRESSION OF CONTENT USING ARTIFICIAL NEURAL NETWORKS
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for encoding content using a neural network. An example method generally includes encoding video content into a latent space representation through an encoder implemented by a first machine learning model. A code is generated by upsampling the latent space representation of the video content. A prior is calculated based on a conditional probability of obtaining the upsampled latent space representation conditioned by the latent space representation of the video content. A compressed version of the video content is generated based on a probabilistic model implemented by a second machine learning model, the generated code, and the calculated prior, and the compressed version of the video content is output for transmission.
Information query
Patent Agency Ranking
0/0