- 专利标题: TRANSFORMATION FOR COVARIATE SHIFT OF GRASP NEURAL NETWORKS
-
申请号: US18555780申请日: 2021-05-25
-
公开(公告)号: US20240198515A1公开(公告)日: 2024-06-20
- 发明人: Juan L. Aparicio Ojea , Heiko Claussen , Ines Ugalde Diaz , Gokul Narayanan Sathya Narayanan , Eugen Solowjow , Chengtao Wen , Wei Xi Xia , Yash Shahapurkar , Shashank Tamaskar
- 申请人: Siemens Aktiengesellschaft
- 申请人地址: DE Munich
- 专利权人: Siemens Aktiengesellschaft
- 当前专利权人: Siemens Aktiengesellschaft
- 当前专利权人地址: DE Munich
- 国际申请: PCT/US2021/034023 2021.05.25
- 进入国家日期: 2023-10-17
- 主分类号: B25J9/16
- IPC分类号: B25J9/16 ; G05B19/4155 ; G06T7/00 ; G06T7/70
摘要:
A covariate shift generally refers to the change of the distribution of the input data (e.g., noise distribution) between the training and inference regimes. Such covariate shifts can degrade the performance grasping neural networks, and thus robotic grasping operations. As described herein, an output of a grasp neural network can be transformed, so as to determine appropriate locations on a given object for a robot or autonomous machine to grasp.
信息查询
IPC分类: