FEDERATED LEARNING FOR MULTIPLE ACCESS RADIO RESOURCE MANAGEMENT OPTIMIZATIONS
Abstract:
In one embodiment, a machine learning (ML) model for determining radio resource management (RRM) decisions is updated, with ML model parameters being shared between RRM decision makers to update the model. The updates may include local operations (between an AP and UE pair) to update local primal and dual parameters of the ML model, and global operations (between other devices in the network) to exchange/update global parameters of the ML model.
Information query
Patent Agency Ranking
0/0