ESTIMATING FACIAL EXPRESSIONS USING FACIAL LANDMARKS
Abstract:
In examples, locations of facial landmarks may be applied to one or more machine learning models (MLMs) to generate output data indicating profiles corresponding to facial expressions, such as facial action coding system (FACS) values. The output data may be used to determine geometry of a model. For example, video frames depicting one or more faces may be analyzed to determine the locations. The facial landmarks may be normalized, then be applied to the MLM(s) to infer the profile(s), which may then be used to animate the mode for expression retargeting from the video. The MLM(s) may include sub-networks that each analyze a set of input data corresponding to a region of the face to determine profiles that correspond to the region. The profiles from the sub-networks, along global locations of facial landmarks may be used by a subsequent network to infer the profiles for the overall face.
Information query
Patent Agency Ranking
0/0