SUPERVISED LEARNING AND OCCLUSION MASKING FOR OPTICAL FLOW ESTIMATION
Abstract:
Systems and techniques are described for performing supervised learning (e.g., semi-supervised learning, self-supervised learning, and/or mixed supervision learning) for optical flow estimation. For example, a method can include obtaining an image associated with a sequence of images and generating an occluded image. The occluded image can include at least one of the image with an occlusion applied to the image and a different image of the sequence of images with the occlusion applied. The method can include determining a matching map based at least on matching areas of the image and the occluded image and, based on the matching map, determining a loss term associated with an optical flow loss prediction associated with the image and the occluded image. The loss term may include a matched loss and/or other loss. Based on the loss term, the method can include training a network configured to determine an optical flow between images.
Public/Granted literature
Information query
Patent Agency Ranking
0/0