- 专利标题: CROSS-LAYER AUTOMATED FAULT TRACKING AND ANOMALY DETECTION
-
申请号: US17483285申请日: 2021-09-23
-
公开(公告)号: US20220014422A1公开(公告)日: 2022-01-13
- 发明人: Maruti Gupta Hyde , Yi Zhang , Christian Maciocco , Alexander Bachmutsky , Satish Chandra Jha , S M Iftekharul Alam , Nageen Himayat , Ravikumar Balakrishnan , Vesh Raj Sharma Banjade , Kshitij Arun Doshi , Francesc Guim Bernat , Amar Srivastava , Srikathyayani Srikanteswara
- 申请人: Maruti Gupta Hyde , Yi Zhang , Christian Maciocco , Alexander Bachmutsky , Satish Chandra Jha , S M Iftekharul Alam , Nageen Himayat , Ravikumar Balakrishnan , Vesh Raj Sharma Banjade , Kshitij Arun Doshi , Francesc Guim Bernat , Amar Srivastava , Srikathyayani Srikanteswara
- 申请人地址: US OR Portland; US OR Portland; US OR Portland; US CA Sunnyvale; US OR Portland; US OR Hillsboro; US CA Fremont; US OR Beaverton; US OR Portland; US AZ Tempe; ES Barcelona; IN Bangalore; US OR Portland
- 专利权人: Maruti Gupta Hyde,Yi Zhang,Christian Maciocco,Alexander Bachmutsky,Satish Chandra Jha,S M Iftekharul Alam,Nageen Himayat,Ravikumar Balakrishnan,Vesh Raj Sharma Banjade,Kshitij Arun Doshi,Francesc Guim Bernat,Amar Srivastava,Srikathyayani Srikanteswara
- 当前专利权人: Maruti Gupta Hyde,Yi Zhang,Christian Maciocco,Alexander Bachmutsky,Satish Chandra Jha,S M Iftekharul Alam,Nageen Himayat,Ravikumar Balakrishnan,Vesh Raj Sharma Banjade,Kshitij Arun Doshi,Francesc Guim Bernat,Amar Srivastava,Srikathyayani Srikanteswara
- 当前专利权人地址: US OR Portland; US OR Portland; US OR Portland; US CA Sunnyvale; US OR Portland; US OR Hillsboro; US CA Fremont; US OR Beaverton; US OR Portland; US AZ Tempe; ES Barcelona; IN Bangalore; US OR Portland
- 主分类号: H04L12/24
- IPC分类号: H04L12/24 ; H04W24/04
摘要:
Systems and techniques for cross-layer automated fault tracking and anomaly detection are described herein. Anomaly data may be obtained from a plurality of layers of a network. Elements of the anomaly data may be identified that correspond to a data flow of an application executing on the network. An artificial intelligence model may be trained using the elements of the anomaly data to generate an impact score for the application. The impact score may be generated for the application by evaluating current network metrics using the artificial intelligence model. An operational component of the network may be modified based on the impact score.
信息查询