发明申请
- 专利标题: ADAPTIVE SAMPLING IN MONTE CARLO RENDERINGS USING ERROR-PREDICTING NEURAL NETWORKS
-
申请号: US16050362申请日: 2018-07-31
-
公开(公告)号: US20200184313A1公开(公告)日: 2020-06-11
- 发明人: Thijs Vogels , Fabrice Rousselle , Jan Novak , Brian McWilliams , Mark Meyer , Alex Harvill
- 申请人: Pixar , Disney Enterprises, Inc.
- 申请人地址: US CA Emeryville US CA Burbank
- 专利权人: Pixar,Disney Enterprises, Inc.
- 当前专利权人: Pixar,Disney Enterprises, Inc.
- 当前专利权人地址: US CA Emeryville US CA Burbank
- 主分类号: G06N3/04
- IPC分类号: G06N3/04 ; G06T15/06 ; G06T5/00 ; G06K9/62
摘要:
A modular architecture is provided for denoising Monte Carlo renderings using neural networks. The temporal approach extracts and combines feature representations from neighboring frames rather than building a temporal context using recurrent connections. A multiscale architecture includes separate single-frame or temporal denoising modules for individual scales, and one or more scale compositor neural networks configured to adaptively blend individual scales. An error-predicting module is configured to produce adaptive sampling maps for a renderer to achieve more uniform residual noise distribution. An asymmetric loss function may be used for training the neural networks, which can provide control over the variance-bias trade-off during denoising.
公开/授权文献
信息查询