- 专利标题: DISTRIBUTED MACHINE LEARNING AT EDGE NODES
-
申请号: US15952625申请日: 2018-04-13
-
公开(公告)号: US20190318268A1公开(公告)日: 2019-10-17
- 发明人: Shiqiang Wang , Tiffany Tuor , Theodoros Salonidis , Christian Makaya , Bong Jun KO
- 申请人: International Business Machines Corporation
- 主分类号: G06N99/00
- IPC分类号: G06N99/00 ; H04L29/08
摘要:
A training process of a machine learning model is executed at the edge node for a number of iterations to generate a model parameter based at least in part on a local dataset and a global model parameter. A resource parameter set indicative of resources available at the edge node is estimated. The model parameter and the resource parameter set are sent to a synchronization node. Updates to the global model parameter and the number of iterations are received from the synchronization node based at least in part on the model parameter and the resource parameter set of edge nodes. The training process of the machine learning model is repeated at the edge node to determine an update to the model parameter based at least in part on the local dataset and updates to the global model parameter and the number of iterations from the synchronization node.
公开/授权文献
- US11836576B2 Distributed machine learning at edge nodes 公开/授权日:2023-12-05
信息查询