Data compression techniques for machine learning models
摘要:
In some aspects, techniques for creating representative and informative training datasets for the training of machine-learning models are provided. For example, a risk assessment system can receive a risk assessment query for a target entity. The risk assessment system can compute an output risk indicator for the target entity by applying a machine learning model to values of informative attributes associated with the target entity. The machine learning model may be trained using training samples selected from a representative and informative (RAI) dataset. The RAI dataset can be created by determining the informative attributes based on attributes used by a set of models and further extracting representative data records from an initial training dataset based on the determined informative attributes. The risk assessment system can transmit a responsive message including the output risk indicator for use in controlling access of the target entity to an interactive computing environment.
公开/授权文献
信息查询
0/0