Device deactivation based on behavior patterns
摘要:
Embodiments are described for a pattern-based control system that learns and applies device usage patterns for identifying and disabling devices exhibiting abnormal usage patterns. The system can learn a user's normal usage pattern or can learn abnormal usage patterns, such as a typical usage pattern for a stolen device. This learning can include human or algorithmic identification of particular sets of usage conditions (e.g., locations, changes in settings, personal data access events, application events, IMU data, etc.) or training a machine learning model to identify usage condition combinations or sequences. Constraints (e.g., particular times or locations) can specify circumstances where abnormal pattern matching is enabled or disabled. Upon identifying an abnormal usage pattern, the system can disable the device, e.g., by permanently destroying a physical component, semi-permanently disabling a component, or through a software lock or data encryption.
公开/授权文献
信息查询
0/0