Dynamically federated data breach detection
摘要:
A processor distributes, from a server, a trained supervised machine learning (ML) model and supervised and unsupervised feature information to a plurality of client devices; at each client device, trains the supervised ML model using local data to generate a local supervised ML model, constructs a local unsupervised ML model using the unsupervised feature information, and deploys the local supervised and unsupervised ML models; determining when a detection performance difference between the local supervised and unsupervised ML models reaches a threshold; identifies a proposed change to the supervised or unsupervised feature information; deploys the proposed change on one client device; responsive to determining the proposed change improves the detection performance of that client device, communicates the proposed change to a sampled set of client devices; and responsive to determining the proposed change improves the detection performance of a majority of the sampled set, communicates the proposed change to the server.
公开/授权文献
信息查询
0/0