Systems and methods of speaker-independent embedding for identification and verification from audio
摘要:
Embodiments described herein provide for audio processing operations that evaluate characteristics of audio signals that are independent of the speaker's voice. A neural network architecture trains and applies discriminatory neural networks tasked with modeling and classifying speaker-independent characteristics. The task-specific models generate or extract feature vectors from input audio data based on the trained embedding extraction models. The embeddings from the task-specific models are concatenated to form a deep-phoneprint vector for the input audio signal. The DP vector is a low dimensional representation of the each of the speaker-independent characteristics of the audio signal and applied in various downstream operations.
信息查询
0/0