Clustering techniques for machine learning models
摘要:
In some aspects, systems and methods for efficiently clustering a large-scale dataset for improving the construction and training of machine-learning models, such as neural network models, are provided. A dataset used for training a neural network model configured can be clustered into a first set of clusters and a second set of clusters. The neural network model can be constructed with a number of nodes in a hidden layer that is based on the number of clusters in the first set of clusters. The neural network can be trained based on training samples selected from the second set of clusters. In some aspects, the trained neural network model can be utilized to satisfy risk assessment queries to compute output risk indicators for target entities. The output risk indicator can be used to control access to one or more interactive computing environments by the target entities.
公开/授权文献
信息查询
0/0