Computation reduction using a decision tree classifier for faster neural transition-based parsing
摘要:
A fast neural transition-based parser. The fast neural transition-based parser includes a decision tree-based classifier and a state vector control loss function. The decision tree-based classifier is dynamically used to replace a multilayer perceptron in the fast neural transition-based parser, and the decision tree-based classifier increases speed of neural transition-based parsing. The state vector control loss function trains the fast neural transition-based parser, the state vector control loss function builds a vector space favorable for building a decision tree that is used for the decision tree-based classifier in the neural transition-based parser, and the state vector control loss function maintains accuracy of neural transition-based parsing while the decision tree-based classifier is used to increase the speed of the neural transition-based parsing while using the decision tree-based classifier to increase the speed of the neural transition-based parsing.
信息查询
0/0