- 专利标题: Dual flow generative computer architecture
-
申请号: US16417192申请日: 2019-05-20
-
公开(公告)号: US11544607B2公开(公告)日: 2023-01-03
- 发明人: Haoliang Sun , Ronak R. Mehta , Hao Zhou , Vikas Singh , Vivek Prabhakaran , Stirling C. Johnson
- 申请人: Wisconsin Alumni Research Foundation
- 申请人地址: US WI Madison
- 专利权人: Wisconsin Alumni Research Foundation
- 当前专利权人: Wisconsin Alumni Research Foundation
- 当前专利权人地址: US WI Madison
- 代理机构: Boyle Fredrickson, S.C.
- 主分类号: G06N7/00
- IPC分类号: G06N7/00 ; G06F17/18 ; G06N20/20 ; G06N3/08 ; G06N3/04
摘要:
A machine learning architecture employs two machine learning networks that are joined by a statistical model allowing the imposition of a predetermined statistical model family into a learning process in which the networks translate between and data types. For example, the statistical model may enforce a Gaussian conditional probability between the latent variables in the translation process. In one application, MRI images may be translated into PET images with reduced mode collapse, blurring, or other “averaging” type behaviors.
公开/授权文献
- US20200372384A1 Dual Flow Generative Computer Architecture 公开/授权日:2020-11-26
信息查询
IPC分类:
G | 物理 |
G06 | 计算;推算或计数 |
G06N | 基于特定计算模型的计算机系统 |
G06N7/00 | 基于特定数学模式的计算机系统 |