Method and system for using machine learning techniques to identify and recommend relevant offers
摘要:
User data from users/consumers is transformed into machine learning training data including historical offer attribute model training data, historical offer performance model training data, and user attribute model training data associated with two or more users/consumers, and, in some cases, millions, tens of millions, or hundreds of millions or more, users/consumers. The machine learning training data is then used to train one or more offer/attribute matching models in an offline training environment. A given current user's data and current offer data are then provided as input data to the offer/attribute matching models in an online runtime/execution environment to identify current offers predicted to have a threshold level of user interest. Recommendation data representing these offers is then provided to the user and the current user's actions with respect to the recommended offers is monitored and used as online training data.
信息查询
0/0