Memorization model for context violations
Abstract:
For various content campaigns (or content), an online system predicts a likelihood score of context violations (e.g., account term violations) of a content campaign. The online system derives a plurality of feature vectors of the content campaign. The online system predicts a likelihood score of context violation of the content campaign using a memorization model based on the plurality of feature vectors. The memorization model comprises a plurality of categories and a plurality of items of each category. Each of the plurality of categories has a category weight, and each of the plurality of items of each category has an item weight. The predicted likelihood score is based on a combination of a plurality of category weights and a plurality of item weights associated with the plurality of feature vectors. The online system performs an action affecting the content campaign based in part on the predicted likelihood score.
Public/Granted literature
Information query
Patent Agency Ranking
0/0