基于反事实表征学习的端云协同计算方法及系统
Abstract:
本发明公开了一种基于反事实表征学习的端云协同计算方法及系统,该方法主要针对端云协同环境下数据异质性导致的辛普森悖论问题,本方法通过识别和替换端侧本地图像数据的关键特征,生成反事实正负样本进行对比学习,以逼近全局数据分布,减轻端侧图像分类模型与全局模型间的偏差;为确保特征独立可控,引入因子去相关损失约束特征间相关性本发明的方法提供了一种有效应对数据异质性、缓解辛普森悖论、实现端向云去偏汇聚的联邦学习,在非IID与IID数据分布下有效地提高了全局模型的性能。
Patent Agency Ranking
0/0