一种基于GCNet的红外图谱目标监测和故障诊断方法及系统
摘要:
本发明公开了一种基于GCNet的红外图谱目标监测和故障诊断方法及系统,包括获取被监测目标设备的红外图像形成红外图普,方法包括:提取红外图谱中的温度数据,将温度数据进行LUT变换得到灰度图像;将灰度图像输入形状识别GCNet神经网络在灰度图像中提取目标设备的形状坐标;将目标设备的形状坐标输入组件识别GCNet神经网络在目标设备形状区域中提取目标设备各组件的Mask掩膜;获取目标设备各组件Mask掩膜区域的有效的温度数据;依据有效的温度数据根据目标设备各组件温度特征进行故障诊断。本发明通过人工智能图像识别技术解决现场复杂环境、实际作业中红外图谱中设备及部件识别难点,进而诊断分析变电站设备缺陷情况。
0/0