一种氢燃料电池性能衰退预测方法、装置及介质
Abstract:
本发明公开一种氢燃料电池性能衰退预测方法、装置及介质,所述方法包括:对预先获取的氢燃料电池电压退化数据进行预处理,采用结合局部加权回归法的VMD算法对原始数据进行降噪平滑处理,采用XGBoost对数据进行特征参数提取,进一步采用半数均匀初始化策略和透镜成像折射学习方法对光学显微镜算法进行改进,得到IOMA,同时使用IOMA对图卷积神经网络GCN和基于傅里叶变换的频域增强分解变压器结合的神经网络模型GCN‑FEDformer进行参数优化,得到IOMA‑GCN‑FEDformer预测模型,并将测试数据样本输入到IOMA‑GCN‑FEDformer预测模型中得到最终预测结果。本发明能够有效地提高氢燃料电池性能衰退预测模型精度,也为氢燃料电池寿命的预测提供了可靠的依据。
Public/Granted literature
Patent Agency Ranking
0/0