量子模型训练方法、多模态数据处理方法及装置
摘要:
本发明属于量子机器学习领域,提供一种量子模型训练方法、多模态数据处理方法及装置,训练方法包括:构建多模态样本训练集,多模态样本训练集包括多种模态的经典输入数据和样本标签;将经典输入数据转换为量子输入数据;将量子输入数据输入待训练的量子多模态神经网络模型,通过量子多模态神经网络模型对量子输入数据进行量子单模态特征提取、量子多模态特征融合及量子比特测量后,得到样本分析结果;根据样本分析结果和样本标签,对模型参数进行调整,直至满足迭代训练终止条件,得到训练好的量子多模态神经网络模型。由于量子多模态神经网络模型可实现对多模态数据高效、准确地处理,提升了模型在多模态数据处理和分析任务上的性能。
0/0