一种蜜点感知增强的恶意流量检测方法
摘要:
本发明提供一种蜜点感知增强的恶意流量检测方法。该方法主要是检测攻击者的恶意攻击行为。首先,主要分析攻击者的恶意攻击行为,生成并部署模拟正常Web服务器接收攻击的蜜点;采集并处理全流量数据和攻击者触发蜜点后产生的数据;预训练阶段,自监督对比学习的编码器使用无标签的全流量数据训练;微调阶段,使用完成预训练的编码器处理白名单流量数据和蜜点数据,处理后的数据输入给MLP分类器进行训练和评估,以调整CNN编码器和MLP分类器的参数;将训练好的模型部署到全流量入口,以识别全流量数据中的恶意流量。实施本发明,可以使模型更全面地学习蜜点数据中的多种攻击行为,增强系统识别高隐蔽威胁行为的能力。
公开/授权文献
0/0