一种新能源电车锂电池的荷电状态预测方法
Abstract:
本发明公开了一种新能源电车锂电池的荷电状态预测方法,首先获取锂电池历史使用数据,并对其数据进行归一化预处理;采用连续时间空域特征提取算法对预处理过的稳定的锂电池数据集进行特征参数提取;基于特征选择的KNN分类算法对提取的特征参数进行分类;运用基于随机森林的递归特征消除方法进行特征选择得到最优特征子集;利用光学显微镜算法对D‑KNN的超参数进行优化;将最优子集输入到优化后的D‑KNN模型中进行训练,从而得到锂电池预测数据。本发明根据锂电池使用数据动态变化的特性,采用三种方法对数据进行提取、分类、选择,最终输入进入动态模型进行预测,极大提升了锂电池剩余电荷预测结果的准确性。
Public/Granted literature
Patent Agency Ranking
0/0