具有对抗性训练的伪异常样本表面缺陷检测方法及设备
摘要:
本发明针对工业产品表面缺陷在实际应用中“样本不平衡”问题,以及由于非显著缺陷和不同缺陷之间的相似性,高效定位和分类表面缺陷仍然是一个挑战的问题,提出了一种具有对抗性训练的伪异常样本表面缺陷检测方法及设备,在不需要额外异常样本学习的基础上能够适应检测数据集,从而达到工业产品表面缺陷的有效检测。方法中混合对象检测器,特征编解码器和分类器。对象检测器能够在正式检测之前先筛选一轮异常区域达到整个模型的高效检测能力。特征编解码器具有伪异常样本的对抗性训练,能够使得模型在不需要真实的异常样本的情况下完成数据集正常和异常的学习,减少实际应用中“样本不平衡”对检测结果的影响。
0/0