一种基于频域卷积和大卷积的图像修复方法
摘要:
本发明公开了一种基于频域卷积和大卷积的图像修复方法,可用来实现将缺损图像完整的修复,并保持纹理的连续性与语义的合理性,符合人类的感知。该方法包括:根据原始图像数据和图像掩膜,预处理获得被掩膜遮挡待修复图像,构建训练数据集;构建基于频域卷积和大卷积的图像修复LKFFC‑GAN生成对抗网络模型;将构建的训练数据集输入到LKFFC‑GAN网络的生成器并且输出修复后的图像;将已修复图像输入LKFFC‑GAN网络的判别器得到此图像各个部分判别为原始图像的概率并通过加权损失函数对生成器和判别器联合训练;在测试集上评估模型LKFFC‑GAN的训练效果。本发明相比于当前主流模型,在L1误差、峰值信噪比(Peak Signal‑to‑Noise Ratio,PSNR)、和结构相似性(Structural Similarity Index,SSIM)这三项指标中取得了更好的恢复效果。
0/0