基于YOLO v4的无人机影像路面病害检测方法
摘要:
本发明涉及一种基于YOLOv4的无人机影像路面病害检测方法,属于路面病害检测领域。采用深度可分离卷积作为YOLOv4中卷积方式降低了网络的复杂度和减少模型计算的参数量;SE通道注意力按照每个通道的重要性分配不同的权重,有效利用通道间的信息;自适应特征融合模块充分学习高低层之间的特征信息,自适应地学习各尺度特征映射融合的空间权重,解决了由于YOLOv4中特征金字塔和路径聚合网络特征融合不充分问题,通过加入SE注意力机制和自适应特征融合模块能够进一步提高网络精度;采用的Focalloss损失函数解决了部分样本数量不均衡的问题,提高了路面病害检测精度。
公开/授权文献
0/0