一种基于对抗机制的半监督式零件缺陷检测方法
摘要:
本发明公开了一种基于对抗机制的半监督式零件缺陷检测方法,包括:S1、建立对比分类网络,对比分类网络包括初始化参数为θ的分类器Cθ和初始化参数为的判别器S2、利用带标签零件图片数据集Sl训练分类器Cθ;S3、利用带标签零件图片数据集Sl和无标签零件图片数据集Su训练判别器S4、利用训练好的分类器Cθ对待测试零件图片进行预测,获得待测试零件的最终检测结果。该方法以半监督学习的方式,利用对抗机制训练出具有高精度与高鲁棒性的分类器,摒弃了传统深度学习分类任务中预测单张图片的类别标签的概念,致力于判断两张图片是否相似,以此来间接预测类别标签,在小批量带标签数据集上有良好的表现力与鲁棒性。
0/0