基于模仿学习和强化学习的暖通空调负荷优化控制方法
摘要:
本申请提出了一种基于模仿学习和强化学习的暖通空调负荷优化控制方法,涉及电力需求响应技术领域,其中,该方法包括:初始化深度Q网络;获取建筑暖通空调的历史运行数据,根据历史运行数据生成预训练数据;使用预训练数据、基于模仿学习对初始化后的深度Q网络进行预训练;使用预训练后的深度Q网络根据实时天气数据给出最优的建筑暖通空调温度设定,完成负荷优化控制。采用上述方案的本申请考虑了实际应用场景中难以建立仿真环境的限制,能够快速应用于实时电价下的暖通空调温度设定在线优化,在保持室内温度在合理范围内的同时降低暖通空调用电成本。
0/0