一种动态进化鲸鱼优化算法的化合物水溶性预测方法
摘要:
本发明提供了一种动态进化鲸鱼优化算法的化合物水溶性预测方法,具体包括以下步骤:步骤S1:选取化合物水溶性数据集作为实验数据并将数据集划分为训练集和测试集;步骤S2:使用多种群和种群动态进化的策略改进鲸鱼优化算法提高鲸鱼优化算法的寻优能力;步骤S3:将改进后的鲸鱼优化算法用于LSTM神经网络的参数寻优,训练具有较优参数结构的LSTM神经网络;步骤S4:使用改后的LSTM神经网络预测预测化合物水溶性;利用本发明训练的LSTM深度学习模型,能够准确预测化合物水溶性;对传统的鲸鱼优化算法进行优化,提高了寻优精度和算法收敛效率;将深度学习与群体智能优化算法应用于化合物水溶性预测,为化合物相关性质预测的研究工作提供了有价值的参考。
0/0