一种基于神经拟态计算的在线神经元分类方法
摘要:
本发明公开了一种基于神经拟态计算的在线神经元分类方法,将大脑皮层采集的神经元锋电位信号通过场编码转换成脉冲信号,借助脉冲神经网络分类不同波形及对应时间戳,实现在线神经元锋电位信号分类;同时,通过脉冲神经网络在线更新方法,适应神经元锋电位波形的在线变化,提升长时在线神经元锋电位分类准确性。本方法具有较快计算速度,可以提升锋电位分类流程的速度,在不同数据集上的分类保持较高的一致性,且有助于植入芯片的部署。
公开/授权文献
0/0