一种基于SOM-M的业扩项目聚类方法、装置、设备和存储介质
Abstract:
本发明涉及一种基于SOM‑M的业扩项目聚类方法,包括:获取原始业扩项目数据,原始业扩项目数据包括:项目节点、节点计划用时、节点预算费用;将预处理后的原始业扩项目数据输入至SOM‑M模型中,初始化竞争层的神经元参数;计算输入层的神经元与竞争层的神经元间的相似性和一阶动量,更新竞争层的神经元参数;根据更新后的竞争层的神经元参数,得到业扩项目的节点类别。本申请通过测量多个神经元相似性,使多个神经元的相似性相互竞争,不断调整神经元逼近对象的类别中心,使神经元自动聚类,在加入一阶动量后,提升了SOM的收敛能力,更易于找到聚类中心,具有较强的分类能力和快速的学习能力,在对业扩项目聚类中具有很好的效果。
Patent Agency Ranking
0/0