一种基于双重条件生成对抗网络的缺失数据填补生成方法
摘要:
本发明涉及一种基于双重条件生成对抗网络的缺失数据填补生成方法,属于计算机中数据感知与重构领域,包括以下步骤:S1:对样本数据进行编码,设计作为数据生成条件的样本类别和样本已存在数据的在生成过程中的表示方式;S2:构建双重条件生成对抗网络的结构,其中包括生成模型、判别模型;S3:对双重条件生成对抗网络结构的目标优化函数进行表示;S4:建立数据生成模型的训练数据集,对双重条件生成对抗网络进行训练;S5:分析不同的数据缺失情况,采用训练好的双重条件生成对抗网络进行缺失数据生成填补。本发明提供了一种针对表格类数据构建高质量训练数据集的方法,用于支撑大数据应用场景中的机器学习模型训练。
0/0