基于深度卷积特征的电网危害鸟种分类识别方法
摘要:
本发明公开了一种基于深度卷积特征的电网危害鸟种分类识别方法,首先针对电网巡检拍摄的鸟种图像,构建电网危害鸟种图像数据集,基于前馈去噪卷积神经网络对鸟种图像进行去噪预处理;搭建卷积神经网络DarkNet‑53模型,采用大规模开放数据集进行预训练,利用预处理后的鸟种图像训练集重新训练,并采用卷积神经网络可视化工具Grad‑CAM算法生成不同特征提取层的热力图,提取最佳特征图中的鸟种图像深度卷积特征;构建基于纠错输出编码支持向量机的鸟种分类识别模型,采用鸟种图像的深度卷积特征进行训练和测试,实现对危害鸟种的分类识别。本发明可用于电网涉鸟故障的差异化防治,有助于电网巡检人员准确识别鸟类。
0/0