基于混合扩展块字典稀疏表示的单样本人脸识别方法
摘要:
本发明公开了一种基于混合扩展块字典稀疏表示的单样本人脸识别方法,包括步骤(S1):构建非目标对象的通用数据集X;步骤(S2):构建目标对象标准样本集N;步骤(S3):构建测试样本集Y;步骤(S4):构建非目标对象的遮挡块字典和类内差异块字典步骤(S5):根据上述步骤得到的混合完备扩展块字典采用SRC模型中的加权块稀疏表示分类器对目标对象待测样本y的B个块图像进行线性稀疏表示,以进行该待测样本的遮挡人脸识别。本发明首先对人脸图像分块,然后采用KDA算法分别构建目标对象的基本块字典,非目标对象的遮挡块字典和类内差异块字典,最后采用加权块稀疏表示分类器对待测样本进行准确预测,有效提高了单样本人脸识别的准确性。
0/0