一种多视角深度生成图像聚类方法
Abstract:
本发明公开了一种多视角深度生成图像聚类方法,属于图像聚类与数据挖掘技术领域,1)预训练各视角独立的编解码网络,发现各视角潜在特征空间;2)预训练多视角特征融合编解码网络,发现多视角融合特征空间;3)随机初始化高斯混合模型参数;4)计算数据样本由某一子高斯模型生成的概率作为图像聚类结果,生成聚类损失,计算高斯混合模型参数更新值,更新参数直到收敛。本发明针对图像数据设计了一种多视角深度生成图像聚类方法,主要考虑利用多视角图像数据中的互补信息优化特征的学习,提高图像聚类和特征学习效果,并为此设计一种多视角特征融合策略,端到端地融合多个视角中的数据信息,该策略可以有效提高多视角数据信息的利用率,提高图像聚类算法性能。
Patent Agency Ranking
0/0