一种基于类间模糊抑制的判别字典学习纺织图像分类方法
摘要:
提高纺织图像瑕疵分类准确度。本发明公开一种基于类间模糊抑制的判别字典学习纺织图像分类方法,包括:S1、将数据集样本X分为训练集样本、测试集样本;S2、对样本进行特征提取,得到训练集样本的特征向量Y、标签矩阵H1、测试集样本的特征向量ytest;S3、计算字典学习目标模型所需的初始映射函数F0,将训练集样本的原始特征转移到高维空间,使标签矩阵H1中不同类别间的点相距预设距离;S4、初始化训练集样本字典学习中的学习字典D和稀疏表示矩阵S;S5、利用初始化矩阵,进行判别字典学习,获取更新后的矩阵,输出更新后的学习字典
0/0