一种基于结构保持零样本学习的鸟类濒危物种识别方法
摘要:
本发明公开了一种基于结构保持零样本学习的鸟类濒危物种识别方法,包括如下步骤:数据输入步骤,输入数据集包括常见鸟类图像视觉特征、语义信息、标签信息等,以及鸟类濒危物种的语义信息;训练步骤,学习视觉特征空间到语义空间的双向映射,同时使用流形一致性对该映射作进一步的约束。将优化问题归结成Sylvester方程求解问题,求解过程简单易实现,求解的结果为映射矩阵P;预测步骤,利用训练步骤得到的映射矩阵P对给定语义信息的鸟类濒危物种图像做出识别。本发明保留了数据间的结构信息,解决了领域漂移的问题,提高了图像分类的精确度,使之能够应用到复杂的鸟类图像识别的问题中,并能够对没有已知标签信息的濒危物种进行识别。
0/0